

Elucidating the Role of Cytochrome p450 Enzymes in Drug Metabolism and Interactions

Zhou Li Hua¹

¹ Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan. E-mail: zh.lih@gmail.com

Received: 07/June/2024; Revised: 12/July/2024; Accepted: 15/August/2024; Published: 30/September/2024

Abstract

The heme-containing proteins known as cytochrome P450 (P450) enzymes are present in humans and bacteria alike. The seven gatherings of chemicals in warm blooded animals are situated in mitochondria, albeit the greater part are layer bound and found in the endoplasmic reticulum. P450s are engaged with the digestion of a wide range of substances, like regular items, meds, and cancer-causing agents, as well as the digestion of steroids, unsaturated fats, eicosanoid particles, and nutrients A and D. All tissues, with the exception of skeletal muscle and red blood cells, have P450s. P450s are of great interest because of their applicability in many different domains, such as enzymology, physiology, microbiology, pharmacology, toxicology, environmental sciences, biochemistry, biotechnology, and chemistry. The functions of human P450s in drug metabolism and interactions will be highlighted in this review.

Keywords: Cytochrome P450, Biotechnology, Drug Metabolism and Interactions.

1 INTRODUCTION

The identification of the transporters and cytochrome P450s (CYPs) responsible for the absorption and efflux of substances into different organs in the latter half of the 20th century caused a paradigm shift in the approach to drug development. It was no longer necessary to take new chemical entities for in-life screening investigations beforehand. When a new chemical entity was developed, it was usually necessary to characterise the mechanism of drug-drug interactions as well as comprehend the role that transporters and enzymes play in drug disposition (Liu et al., 2024). Comparing these studies to in-life phase studies, there were several notable benefits, including simplicity, convenience, and a chemical required that was several times lower. The multifactorial data displayed the combined effects of ADME in the examined animal species. Researchers find it challenging to isolate a medication candidate's impact on a single ADME factor. Offering information on the structure-activity relationship (SAR) based on permeability, CYP inhibition, metabolic stability, and CYP profiling was a strength (Lee et al., 2024). Metabolism and transporter-dependent have emerged as a primary cause of multiple drug withdrawals from the market, black box warnings, approval denials, and development-stage early terminations throughout the past 20 years. It is critical to have an early understanding of the DDI potential of novel drug candidates in order to identify the best prospects for drug development, evaluate the clinical relevance of DDI, plan clinical DDI research, and label the product insert. Metabolism is

catalysed by several enzymes from diverse tissues. However, liver is the principal organ where cytochrome P450 enzymes catalyze the biotransformation of several xenobiotics (Mahanayak, 2024). It is noteworthy that human metabolism-related enzymes differ from their animal counterparts in terms of their catalytic characteristics. Therefore, human-derived systems such human liver microsomes (HLM), S9 fractions, cytosol, and hepatocytes—which contain a variety of enzymes and proteins—are usually used to predict human metabolism utilising *in vitro* systems. Competition between co-administered medications at sites in the colon, liver, kidney, during biliary excretion, and at the blood-brain barrier can result in DDI.

Generally speaking, the following mechanisms cause DDIs. When two medications are metabolised by the same enzyme, they can have competitive metabolic interactions that impact each other's metabolism. non-competitive metabolic interactions in which, as a result of distinct binding sites on the enzyme, one drug allosterically modulates (usually inhibits) the metabolism of another drug. Time-dependent inhibition or inactivation of CYP caused by a metabolite as opposed to the original substance. In these situations, a less active enzyme inhibits the metabolism of the interacting medication. drug-induced transcriptional activation of nuclear receptors, which results in the induction of certain CYP enzymes. This induction may happen over a few days with several daily exposures to the medication, as opposed to a single exposure. The upregulation of CYP enzyme causes other drugs that interact with it to be more metabolically active, which can either make the drug pharmacologically inactive or cause any harmful metabolites to form. The test medication may alter the pharmacokinetic behaviour of other interacting medicines, potentially resulting in toxicities or therapeutic failure, if it is a substrate or inhibitor of certain transporters. Comparable DDIs have been documented with uptake transporters such as cation and organic anion transporters. (OAT and OCT) (Lee et al., 2024). Role of Cytochrome P450 in Drug Metabolism shown in Figure 1.

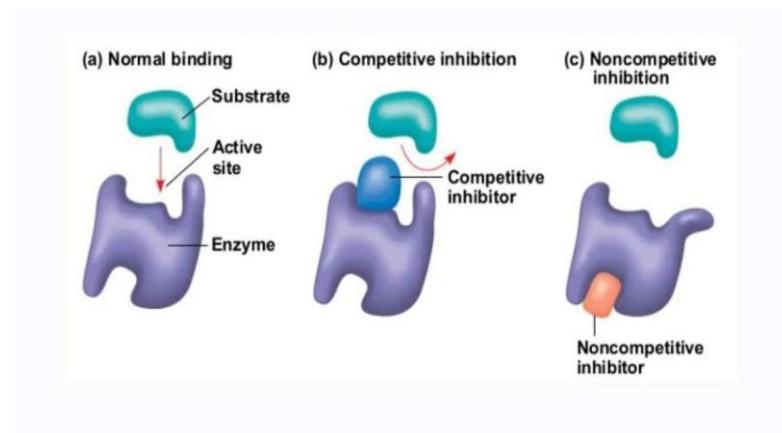


Figure 1: Role of Cytochrome P450 in Drug Metabolism

2 LITERATURE REVIEW

In this article, (Mishra et al., 2010; Ogu & Maxa, 2000) provide an explanation of the drug interactions caused by cytochrome P450 isoenzymes, which are responsible for the biotransformation

of numerous medications. Numerous medication interactions can be identified by monitoring a drug's metabolism via the cytochrome P450 enzyme system, which provides information on the drug's pharmacological effects, toxicity, and side effects. The authors have emphasised the possible issues and side effects that are anticipated and can be prevented by modifying the medication and dosage schedule when administering several prescriptions. This publication also reports that more than one isoenzyme is involved in the metabolism of various medications. The drug's acquired metabolic route can therefore be used to evaluate the risk/benefit analysis. The authors have concluded by summarising their discussion on giving clinicians the proper guidelines about the use of numerous drug regimens based on upcoming research on cytochrome P450 metabolism.

This review paper by (Bibi, 2008) discusses the function of various cytochrome P450 (CYP450) enzymes in drug interaction investigations. Changes in the levels of metabolic enzymes and other extrahepatic tissues found in the liver are the explanation for many drug-drug interactions. Hepatic CYP450 enzymes are involved in a significant number of medication interactions. When certain medications are used concurrently, enzyme inhibition occurs far more frequently than enzyme inducers. Understanding how enzymes are induced or inhibited is crucial for identifying drug interactions and side effects in patients who are prescribed various regimens. The authors have clarified several forms of interaction, including pharmacokinetic and pharmacodynamic interactions, in their conclusion. The pharmacokinetic interactions on P450 are the main topic of this publication.

To investigate DDI, 3670 co-administered cases were reduced in number. Five pairs of medicines were chosen at random to create unique combinations that, when used together, tend to exponentially increase the myopathic risk in patients. Compared to other medications, medicines metabolised by the CYP3A4 and CYP2D6 enzymes showed a higher DDI. Consequently, it provides new biological knowledge on more recent DDIs that are clinically relevant and aids in the assessment of possible molecular pathways (Duke et al., 2012).

In order to detect (Patel et al., 2011) conducted the study. The authors also noted that patients with cardiovascular problems are more likely to experience drug-drug interactions due to the variety and quantity of concurrent medications they take. Despite reports of a high frequency of pharmaceutical interactions, the prevalence of these interactions in Indian cardiac patients has not been published.

Samer et al., (2013) express that CYP450 testing is a fundamental technique for sorting out how a patient will respond to medication. Polypharmacy and polymorphism in the qualities of the proteins associated with the medication's digestion are among the essential explanations behind the expansive assortment of pharmacological reactions. The essential variety in the CYPs, including its genotypic and phenotypic angles, has been accounted for by the creators. Moreover, it was noticed that intragastric pH levels were more noteworthy in those with CYP2C19 variation alleles.

While depicting specific heritable changes in quality capability that are not achieved by changes in DNA succession, the expression "epigenetics" is utilized. Two significant components incorporate

DNA methylation and alterations to histone proteins. Histone alteration changes the availability and transcriptional movement of the chromatin, while DNA methylation impacts the cell's ordinary control of quality articulation. The control of quality articulation using microRNAs (miRNAs) is habitually alluded to as "epigenetics". Epigenetic examples' essential element is their reversibility; they can be tissue-explicit and impacted by have and natural variables including sex and age. An outline of the somewhat new field of concentrate on how pharmacologically critical qualities and medication reaction are impacted by epigenetic processes was distributed as of late. A broad assessment of the differential quality articulation in the human HepG2 hepatoma cell line following treatment with 5-aza-2'-deoxycytidine to hinder DNA methylation and trichostatin A to obstruct histone deacetylation uncovered expansive effects on more than 1500 and 500 qualities, separately. Among these were the excitement of a few record factors, cytochromes P450, and CYP3A qualities (Dannenberg & Edenberg, 2006). CYP1 qualities are basically remembered for additional nitty gritty occasions. The effect of the climate on DNA methylation designs was shown by the finding that the methylation of the CYP1A1 advertiser in human lung tissue was most minimal in weighty tobacco clients and most noteworthy in non-smokers. In 2003, Anttila et al. The level of methylation at two CpG destinations close to the record start site and mRNA in human liver examples were viewed as conversely corresponded in CYP1A2. Moreover, new exploration has focused on the effect of miRNAs on the outflow of the ADME quality. The control of miRNA is convoluted by the tremendous amount of miRNAs — about 1000 extraordinary particles for each mammalian species — and their inadequately characterized restricting specificities, which take into consideration an extensive variety of potential miRNA-target quality collaborations (Friedman & Jones, 2009). Various information bases that foresee potential restricting locales have been made utilizing different techniques (Rieger et al., 2011). Certain product apparatuses, like MIRNA-DISTILLER, give the assemblage of miRNA expectations from numerous information bases, thus working on information organization. In any case, joining these datasets is a troublesome endeavor (Rieger et al., 2011). Through miR-27b and miR-378 miRNAs have been displayed to straightforwardly manage CYP1B1, CYP3A4, and CYP2E1. Atomic receptors are likewise focuses of miRNAs, as exemplified by the xenosensor pregnane X receptor (PXR, NR1I2), which was demonstrated to be directed by miR-148a. This influences CYP3A4 and CYP2B6 articulation levels and how these proteins use xenobiotic drug substrates. Hepatocyte atomic element 4 alpha (HNF4 α) is directed by miR-24 and miR-34a; overexpression of these miRNAs brings about a decline in HNF4 α and a downregulation of its objective qualities. Since the CYP3A4-focusing on miR-27b likewise influences the vitamin D receptor (VDR), another transcriptional controller of CYP3A4, there is an immediate and a roundabout instrument for miRNA control of CYP3A4. The control of the liver X receptor (LXR) by miR-613 and the peroxisome proliferator-enacted receptor (PPAR γ) by a similar miRNA, miR-27b, give extra proof to the significant job miRNAs play in hepatic quality guideline.

3 ROLE OF CYTOCHROME P450 ENZYMES IN DRUG METABOLISM AND INTERACTIONS

Simultaneously as their job in the digestion of endogenous atoms was being explained, P450s' parts in the digestion of unfamiliar substances, like medications, regular items, and different mixtures, were being found. P450s are perceived to be engaged with most drug medications' digestion. P450s 3A4, 2D6, 2C9, 1A2, and 2C19 handle the vast majority of the medication digestion in people, with P450s 2E1, 2A6, 2C8, and 2B6 making a little commitment. Most of P450 drug handling happens in the liver and small digestive system. P450 3A4 and P450 2C9 are the two P450s that are most normal in these tissues. Moreover, P450s 2C9 and 3A4 have a more prominent ability to use greater substrates than the other P450s (Qian et al., 2024). The Food and Medication Organization demands data with respect to explicit P450s engaged with each new medication's digestion from the get-go in the testing and enlistment process. Also, insights about the original medication's ability to hinder extra P450s are required. Therefore, these obligations are appointed to offices inside drug organizations, which makes it conceivable to conjecture changes in bioavailability and collaborations between drugs. When the drug has been given the all-reasonable to be sold, doctors and patients can acquire this data. The "fine print" or medication data sheet that is typically included with commercials for drugs in lay magazines counts the particular P450s that the medication might impede or that are associated with the medication's digestion. This data can likewise be conveyed by implication by offering a rundown of conceivable medication communications or contraindications for different meds. Showing Chemical Structure of Cytochrome P450 Liver Enzyme shown in Figure 2.

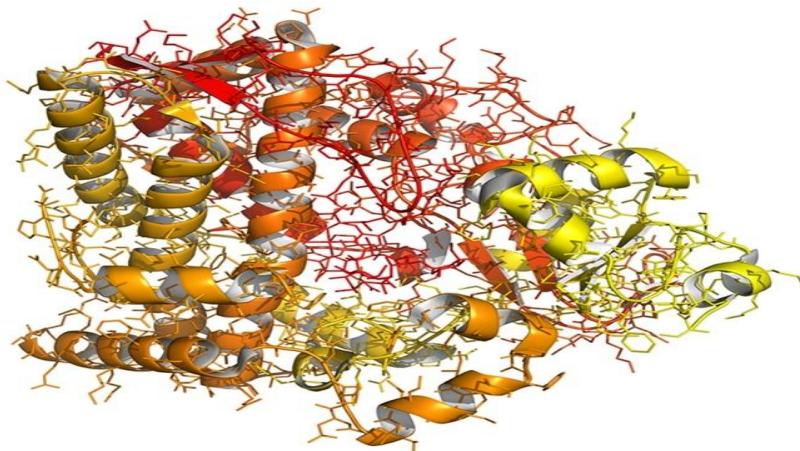


Figure 2: Showing Chemical Structure of Cytochrome P450 Liver Enzyme

- **P450 Enzyme Classification**

People contain around thirty CYP compounds having a place with families 1-4, which are liable for drug digestion. In any case, 90% of medication oxidation not set in stone to be credited to six fundamental compounds: CYP 1A2, 2C9, 2C19, 2D6, 2E1, and 3A4. With regards to amount, the two most huge CYP isoenzymes are CYP2D6 and CYP3A4. Both the liver and the stomach wall contain

CYP3A4, which might act as the essential protection system there. This compound utilizes most medications that effect on the focal sensory system (CNS), except for unstable sedatives.

CYP1A Subfamily

The CYP1A family contains the enzymes 1A1 and 1A2. CYP1A1 expression in the liver is quite low. It is for the most part tracked down in the placenta, lymphocytes, mammary organs, and lungs. Polycyclic fragrant hydrocarbons (PAHs), found in tobacco smoke, are known to unequivocally animate this chemical and may assume a part in the inactivation of procarcinogens. The gamble of cellular breakdown in the lungs and CYP1A1 movement are fundamentally related. The liver is the essential organ where CYP1A2 articulation is prompted by cigarette smoking. It can likewise be welcomed on by unambiguous food varieties, like cruciferous vegetables and anything that has been grilled or charbroiled. One medication that might raise CYP1A2 action is omeprazole. The medications imipramine, theophylline, caffeine, paracetamol, and phenacetin are known to be metabolised by CYP1A2. Smoking and other changes in CYP1A2 activity can influence a patient's requirement for theophylline in asthmatics and haloperidol in people with mental health issues. Additionally, smoking speeds up the metabolism of caffeine, which helps to explain why smokers are more tolerant of the stimulant (Dai et al., 2024). Contribution of Various Cytochrome P450 Enzymes in Phase 1 Metabolism of Commonly Used Medicines shown in Figure 3.

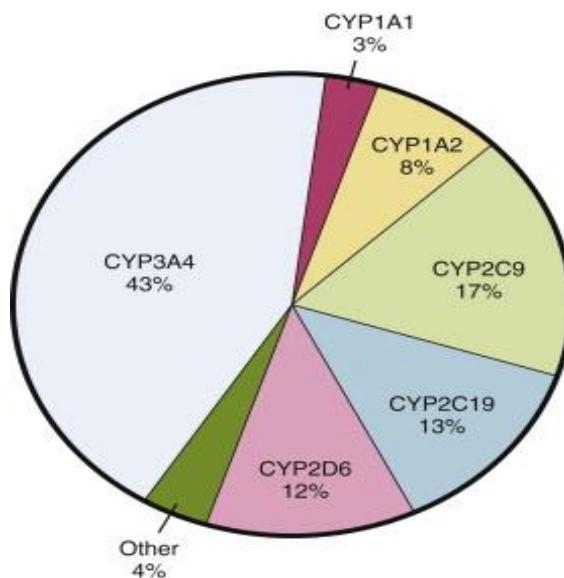


Figure 3: Contribution of Various Cytochrome P450 Enzymes in Phase 1 Metabolism of Commonly Used Medicines

CYP2 Family

One of the substrates broken down by CYP2A6, formerly known as coumarin hydroxylase, is nicotine. This enzyme does not metabolise a large amount of substrates, hence it is not very significant. It is thought that differences in expression levels between racial groups and individuals are linked to an increased risk of nicotine dependency. The majority of the enzymes that make up CYP2C, one of the

most important subgroups, are CYP2C9 and CYP2C19. CYP2C9: Warfarin, an anticoagulant, is one of CYP2C9's substrates. It exists in two isoforms, the most important of which is the S-form, which CYP2C9 metabolises. Numerous variations in the gene encoding this enzyme result in a compromised metabolic state. These individuals might not be stabilised by standard warfarin regimens. CYP2C9 is involved in the metabolism of non-steroidal anti-inflammatory medicines (NSAIDs), such as phenytoin, tolbutamide, an angiotensin-II receptor antagonist, and COX-2 selective inhibitors. The benzodiazepine diazepam, the proton siphon inhibitor omeprazole, the energizer amitriptyline, and propanolol are among the many usually utilized substrates of CYP2C19. There are numerous eminent abnormal varieties in this chemical, one of which has significant clinical implications. While taking the proton-siphon inhibitor omeprazole as a component of treatment for Helicobacter pylori disease, it has been exhibited that patients with unfortunate metabolisers might have fundamentally preferable clinical results over a gathering of patients homozygous for the typical, or wild-type, alleles. Subfamily CYP2D: Various tricyclic antidepressants, certain beta-blockers, particular serotonin reuptake inhibitors, and against arrhythmics like flecanide and encainide are among the many medications that this protein is associated with the digestion of. This compound is especially significant for sedatives since it separates various normally utilized analgesics, including codeine and tramadol. Once alluded to as debrisoquine hydroxylase, it was perhaps the earliest protein to be ordered upon the revelation that specific people had unusual digestion systems of the hypotensive prescription debrisoquine. The catalyst was named CYP2D6 after the parent quality was cloned and portrayed. Until this point, in excess of 70 CYP2D6 polymorphisms have been found. Instead of the regular broad metaboliser aggregate, the greater part of these compounds make a powerless metaboliser aggregate. Furthermore, because of quality duplication, a few genotypes have a condition known as incredibly quick digestion.

CYP2E1 - The sole catalyst in the CYP2E family, CYP2E1 (previously known as dimethylnitrosamine N-demethylase), is accountable for separating little natural mixtures like liquor and carbon tetrachloride notwithstanding halogenated sedatives like isoflurane, methoxyflurane, trichloroethylene, chloroform, and enflurane. A lot of low sub-atomic weight poisons and cancer-causing agents are likewise separated by it, like CH_3CO , vinyl chloride, benzene, styrene, and N-nitrosamines, a considerable lot of which are utilized in assembling and the laundry area. Large numbers of these substances, some of which are supportive of cancer-causing agents, are initiated by CYP2E1. The statement of the protein varies among sexes, and fasting and weight may likewise have an effect on its movement. This might give a clarification to malignant growths related with heftiness. Broad review has been led on the association of CYP2E1 in the improvement of neoplasia because of its job in the biodegradation of a few ecological cancer-causing agents. For instance, in China, a relationship was found between CYP2E1 polymorphisms and oesophageal and stomach malignant growth. Besides, CYP2E1 might play a significant part in the etiology of alcoholic liver sickness, as per mounting information. While liquor and nicotine both enact CYP2E1, its accurate intention is obscure. Smokers might have higher paces of ethanol evacuation for this reason (Yovinska et al., 2024).

CYP3A bunch: More than 120 unmistakable meds are processed by CYP3A4, the most ordinarily communicated drug-using catalyst in people. Along these lines, it is a fundamental area of study for appreciating drug connections in view of compounds. Different prescriptions, including antimicrobials and protease inhibitors, narcotics like midazolam, triazolam, and diazepam, stimulants like amitriptyline and imipramine, hostile to arrhythmics like amiodarone, quinidine, propafenone, and disopyramide, allergy medicines like terfenadine, astemizole, and loratadine, and calcium channel bad guys like diltiazem and nifedipine are among the meds processed.

4 DISCUSSION

The complexity of pharmacological efficacy, safety, and interactions is encompassed by the involvement which goes beyond the straightforward breakdown of pharmaceuticals. Clinical outcomes are significantly impacted by variations in CYP enzyme activity, which might be caused by genetic polymorphisms, medication interactions, or environmental variables. Patients who have genetic polymorphisms in CYP2D6, for instance, may metabolise medications such as opioids or antidepressants at drastically variable rates, which could result in hazardous side effects or therapeutic failure. Similarly, CYP3A4, the most prevalent enzyme in the liver, is involved in many drug-drug interactions as it metabolises a variety of medications. Certain antifungals and antibiotics are examples of CYP3A4 inhibitors that might decrease the metabolism of medications taken together, raising the possibility of side effects.

However, enzyme inducers may result in drug levels that are below the recommended threshold. In therapeutic settings, having a thorough understanding of these dynamics is essential for making well-informed decisions about drug dosage, monitoring, and preventing negative interactions. In the end, research on CYP enzymes advances the expanding field of personalised medicine by enabling treatment plans to be customised to each patient's unique metabolic profile, improving both efficacy and safety.

5 CONCLUSION

Enzymes known as cytochrome P450 play a crucial role in drug metabolism, impacting the pharmacokinetics and pharmacodynamics of several drugs. The significance of comprehending the functioning of these enzymes and the effects of genetic variants and medication interactions on their activity is highlighted by their involvement in the biotransformation of medicines. Healthcare professionals can more accurately predict medication interactions, reduce adverse drug responses, and customise therapies to meet the specific needs of each patient by understanding the possibility of enzyme inhibition, induction, and genetic polymorphisms. In the end, understanding how CYP enzymes function in drug metabolism improves medication therapy precision, which in turn improves patient outcomes and safety.

REFERENCES

[1] Liu, W., Tian, X., Huang, X., Malit, J. J. L., Wu, C., Guo, Z., ... & Qian, P. Y. (2024). Discovery of P450-Modified Sesquiterpenoids Levinoids A-D through Global Genome Mining. *Journal of Natural Products*, 87(4), 876-883. <https://doi.org/10.1021/acs.jnatprod.3c01136>

[2] Lee, J., Beers, J. L., Geffert, R. M., & Jackson, K. D. (2024). A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. *Biomolecules*, 14(1), 99. <https://doi.org/10.3390/biom14010099>

[3] Mahanayak, B. (2024). Biotransformation reactions of xenobiotics: Mechanisms and implications for environmental and human health. *World Journal of Biology Pharmacy and Health Sciences*, 19(1), 158-164. <https://doi.org/10.30574/wjbphs.2024.19.1.0406>

[4] Qian, J., Wang, Y., Kong, Q., Chai, H., Hu, H., Chen, L., ... & Chen, B. (2024). The metabolic profiles of endogenous and exogenous substances in a poor metabolizer of humanized CYP2D6 model. *European Journal of Pharmaceutical Sciences*, 203, 106899. <https://doi.org/10.1016/j.ejps.2024.106899>

[5] Dai, Z., Wu, Y., Xiong, Y., Wu, J., Wang, M., Sun, X., ... & Ge, G. (2024). CYP1A inhibitors: Recent progress, current challenges, and future perspectives. *Medicinal Research Reviews*, 44(1), 169-234. <https://doi.org/10.1002/med.21982>

[6] Yovinska, S., Bakalov, D., Mihova, K., Kamenarova, K., Kaneva, R., Nikolov, R., & Dimova, I. (2024). Genetic Polymorphisms in CYP2 Gene Family in Bulgarian Individuals and their Clinical Implications. *Acta Medica Bulgarica*, 51(1), 1-7. <https://doi.org/10.2478/amb-2024-0001>

[7] Mishra, N. K., Agarwal, S., & Raghava, G. P. (2010). Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. *BMC pharmacology*, 10, 1-9. <https://doi.org/10.1186/1471-2210-10-8>

[8] Ogu, C. C., & Maxa, J. L. (2000, October). Drug interactions due to cytochrome P450. In *Baylor University medical center proceedings* (Vol. 13, No. 4, pp. 421-423). Taylor & Francis. <https://doi.org/10.1080/08998280.2000.11927719>

[9] Bibi, Z. (2008). Role of cytochrome P450 in drug interactions. *Nutrition & metabolism*, 5, 27. <https://doi.org/10.1186/1743-7075-5-27>

[10] Duke, J. D., Han, X., Wang, Z., Subhadarshini, A., Karnik, S. D., Li, X., ... & Li, L. (2012). Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. *PLoS Computational Biology*, 8(8), e1002614. <https://doi.org/10.1371/journal.pcbi.1002614>

[11] Patel, V. K., Acharya, L. D., Rajakannan, T., Surulivelrajan, M., Guddattu, V., & Padmakumar, R. (2011). Potential drug interactions in patients admitted to cardiology wards of a south Indian teaching hospital. *The Australasian medical journal*, 4(1), 9-14. <https://doi.org/10.4066/AMJ.2011.450>

[12] Samer, C. F., Lorenzini, K. I., Rollason, V., Daali, Y., & Desmeules, J. A. (2013). Applications of CYP450 testing in the clinical setting. *Molecular diagnosis & therapy*, 17, 165-184. <https://doi.org/10.1007/s40291-013-0028-5>

[13] Dannenberg, L. O., & Edenberg, H. J. (2006). Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. *BMC genomics*, 7, 181. <https://doi.org/10.1186/1471-2164-7-181>

[14] Friedman, J. M., & Jones, P. A. (2009).

MicroRNAs: critical mediators of differentiation, development and disease. *Swiss medical weekly*, 139(33-34), 466-472.

<https://doi.org/10.4414/smw.2009.12794>

[15] Rieger, J. K., Bodan, D. A., & Zanger, U. M.

(2011). MIRNA-DISTILLER: a stand-alone application to compile microRNA data from databases. *Frontiers in Genetics*, 2, 39.

<https://doi.org/10.3389/fgene.2011.00039>